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This work investigates the symmetry properties of single-wall carbon nanotubes

and their structural analogs, which are nanotubes consisting of different kinds of

atoms. The symmetry group of a nanotube is studied by looking at symmetries

and color fixing symmetries associated with a coloring of the tiling by hexagons

in the Euclidean plane which, when rolled, gives rise to a geometric model of

the nanotube. The approach is also applied to nanotubes with non-hexagonal

symmetry arising from other isogonal tilings of the plane.

1. Introduction

In the past few years there has been a vast amount of

fundamental and applied research on single-wall carbon

nanotubes (e.g. Iijima & Ichihashi, 1993; Endo et al., 1996;

Saito et al., 1998; Damnjanović et al., 1999; Reich et al., 2004).

Structural analogs, such as boron nitride (BN), boron carbide

(BC3) and boron carbon nitride (e.g. BCN, BC2N), have also

been studied (see, for instance, Chopra et al., 1995; Miyamoto

et al., 1994; Liu et al., 1989; Yap, 2009).

In materials research, structural analogs are important in

the design of new materials. Analogs of existing molecules and

compounds are considered because alteration of some

components of the previous material can lead to improve-

ments in some properties. Carbon nanotubes, for instance, are

structurally strong, with their electronic properties dependent

on their chirality (Dresselhaus et al., 1995). The B–C–N

analogs, on the other hand, are expected to maintain the

mechanical properties but with variations in other properties,

e.g. electrical properties. Carbon nanotubes can be conducting

or semiconducting while B–C–N nanotubes are insulating

(Yap, 2009).

The study of symmetry properties of nanotubes has been

relevant for gaining deep insight into their physical (quantum

numbers, optical activity, conductivity, among others), elec-

tronic, mechanical and magnetic properties which determine

their potential applications. Studies on symmetry groups of

carbon nanotubes and their structural analogs have been

carried out (see Damnjanović et al., 2001; Cotfas, 2006; Barros

et al., 2006; Loyola et al., 2012, and references therein). There

are also works pertaining to symmetry groups of nanotubes

with non-hexagonal symmetry (e.g. Milošević & Damnjanović,

2006; Damnjanović et al., 2007; Arezoomand & Taeri, 2009).

These tubes, such as those rolled up from two-dimensional

rectangular and rhombic lattices, include the incommensurate

ones – structures without translational symmetries. Com-

mensurability properties contribute to the physical and elec-

tronic characteristics of nanotubes (Milošević & Damnjanović,

2006; Damnjanović et al., 2007; Damnjanović & Milošević,

2010).

In our paper, the objective is to give an alternative approach

to determine the symmetry groups of single-wall nanotubes.

We use the theory of colorings of tilings in a cylindrical orbit

space arising from colored isogonal tilings in the plane as a

tool to describe and model single-wall nanotubes and char-

acterize their symmetry properties. Colorings of isogonal

tilings are employed as a means to determine different atomic

configurations that exist and are theoretically possible for a

nanotube.

For carbon nanotubes and their structural analogs, the

method involves studying color symmetries associated with a

vertex coloring of the tiling by hexagons in the plane which,

when folded to form a cylinder, serves as a geometric model

for a nanotube. We derive the symmetry group of the nano-

tube from the color fixing group of the associated coloring of

the hexagonal tiling. In addressing nanotubes with non-

hexagonal symmetry, we look at color fixing groups associated

with their corresponding isogonal tilings on the plane. The

color fixing symmetries also shed light on the commensurate

properties of the nanotubes.

In our previous study (Loyola et al., 2012), the symmetries

of a structural analog of a carbon nanotube are analyzed

directly from the three-dimensional symmetries of a given

coloring on a cylinder which models the nanotube. On the

other hand, in this work, our starting point is to work on

colorings of isogonal tilings and to examine the colorings in

cylindrical orbit space evolving from these colorings. From this

technique, we are able to provide formulas for the color

groups and color fixing groups for the colorings in the orbit

space using the symmetries of the corresponding planar

colorings as basis. The approach offers a convenient way to

study symmetries of nanotubes by looking at two-dimensional

isometries. It also facilitates the characterization of the line

group structure of the symmetry group of the nanotube based
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on the plane crystallographic group nature of the symmetry

group of the colored tiling in the plane.

Color symmetry theory has been used in the past to

describe crystal structures (Harker, 1978; Schwarzenberger,

1984; Senechal, 1988a) and quasicrystal/non-periodic struc-

tures (Baake, 1997; Lifshitz, 1997; Scheffer & Lück, 1999;

Bugarin et al., 2008, 2013). Crystallographers have used

colored symmetrical patterns and tilings in several ways, such

as in describing arrangements of atoms in a crystal and in

deriving magnetic symmetries of crystals and quasiperiodic

crystals. This paper highlights the contribution of color

symmetry to describe monoperiodic structures, determine

atomic arrangements pertaining to nanotube structures and

understand their symmetry properties.

The results in this work cover a general class of colorings

including non-perfect colorings – colorings with color sym-

metries that form a proper subgroup of the symmetry group of

the corresponding uncolored tiling. Modeling nanotubes with

atoms that are not equally distributed and studying their

symmetry properties require methods in arriving at non-

perfect colorings of isogonal tilings and an understanding of

how these planar colorings are realized in the cylinder. This

study extends and encompasses the ideas on perfect colorings

provided in related literature (see, for example, Senechal,

1979, 1988b).

The outline of the paper is as follows. In x2, we discuss a

geometric model of a single-wall carbon nanotube and the

derivation of its symmetry group. x3 presents the setting

pertaining to structural analogs of carbon nanotubes. In x4, we

outline the concepts in color symmetry theory relevant to the

study. The main results on symmetry groups of the structural

analogs are given in x5. These results are applied in x6 to

derive the symmetry groups of BN, BC3, BCN and BC2N

nanotubes. In x7, we extend the approach and results of the

previous sections to include nanotubes with non-hexagonal

symmetry. A short discussion on commensurate and incom-

mensurate nanotubes is included. Finally, in x8, a summary of

the paper is presented together with the future outlook of the

work.

2. Single-wall carbon nanotubes and their symmetry
groups

A geometric model of a single-wall carbon nanotube is

constructed by wrapping up a graphene sheet into a seamless

cylindrical tube. The graphene sheet is modeled by a tiling T of

the Euclidean plane E2 by hexagons whose vertices represent

carbon atoms and whose edges represent carbon bonds. The

sheet (or the hexagonal tiling T) is rolled along a vector v,

called the chiral vector of the tube, emanating from the center

of a fixed hexagonal tile, which we assign as the origin Oð0; 0Þ,

and terminating at the center of another tile so that these

centers coincide in the tube (Fig. 1). The vector v becomes the

circumference of the tube.

The hexagonal tiling T has symmetry group G ¼

hx; y; a; bi ffi p6mm (in IUCr notation)

generated by the sixfold (counter-

clockwise) rotation a about O, the

reflection b about the line through O in

the direction of x, and the translations

x; y (Fig. 1a). The chiral vector v can be

expressed as v ¼ mxþ ny, where

m; n 2 Z. In which case, we obtain an

½m; n� nanotube. If n ¼ 0, m ¼ 0 or

m ¼ n, we arrive at a zigzag nanotube;

if m ¼ 2n, 2m ¼ n or m ¼ �n we have

an armchair nanotube. In any other

cases, we obtain a chiral nanotube. The

chiral vectors for the achiral (zigzag and

armchair) nanotubes are displayed in

Fig. 2(a).

Let X consist of points in E2 corre-

sponding to the vertices of the hexa-

gonal tiling T and let L be a subgroup of

the symmetry group G of T generated
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Figure 1
(a) The hexagonal tiling together with the translation vectors x, y and the
chiral vector v ¼ 6xþ 2y. (b) The [6, 2] carbon nanotube obtained by
rolling up the hexagonal tiling in (a) along the chiral vector v.

Figure 2
(a) Chiral vectors associated with achiral nanotubes. A (b) chiral and (c) zigzag carbon nanotube,
together with the z axis, axis of a twofold rotation � and mirror plane of the reflection �v passing
through the z axis.



by the translation l ¼ xmyn, where m; n 2 Z. We consider the

orbit space L\X ¼ fLu : u 2 Xg of all L-orbits of points in X.

Each v 2 X belongs to a set Lu 2 L\X if and only if v may be

obtained from u via translation by an integer power of l.

Let us denote by NGðLÞ ¼ fg 2 G : glg�1 2 Lg the

normalizer of L in G. The set of right cosets NGðLÞ\L of L

in NGðLÞ acts on the orbit space L\X by left multiplication.

That is, if Lg 2 NGðLÞ\L, g 2 NGðLÞ and Lu 2 L\X , then

Lg � Lu ¼ Lgu 2 L\X . It is a well known result from the

theory of manifolds (Senechal, 1988b; Ratcliffe, 2006) that

given the subgroup L (or any torsion-free subgroup) of G, the

symmetry group G� of L\X is isomorphic to NGðLÞ\L.

In our geometric model of a single-wall carbon nanotube

with chiral vector v ¼ mxþ ny, a point of L\X corresponds to

an atom in the nanotube and G� ffi NGðLÞ\L is the symmetry

group of the nanotube.

For the chiral ½m; n� carbon nanotube with chiral vector

vC ¼ mxþ ny, we let LC ¼ hlC ¼ xmyni. Among the elements

of G ¼ hx; y; a; bi that normalize LC are the twofold rotation

a3 and the translations x and y. We have NGðLCÞ ¼

hx; y; a3i ffi p2. This implies that the symmetry group of the

chiral nanotube is G�C ffi NGðLCÞ\LC ffi ðCd � ZÞ �C2, where

d ¼ gcdðm; nÞ: The elements in G�C can be described as

follows: G�C contains the d-fold rotation �d about the z axis

brought about by the translation xm=dyn=d. Other symmetries in

G�C include a screw rotation � about the z axis brought about

by a translation which is neither parallel nor perpendicular to

lC and the twofold rotation �, which results from the twofold

rotation a3, about an axis passing through the origin and

perpendicular to the z axis. We have G�C ¼ h�d; �; �i.
The symmetry groups of nanotubes and other monoperiodic

structures are also described in terms of line groups (Damn-

janović et al., 1999, 2001; Damnjanović & Milošević, 2010).

These are symmetry groups of structures in Euclidean space

E
3 that are periodic only in a single direction (periodicity is

assumed to be in the direction of the z axis). There are 13

infinite families of line groups formed by taking products of an

infinite cyclic group generated by either a translation, a screw

rotation, or a glide reflection, and an axial point group. A

complete list of these families and their corresponding group

generators is found in Damnjanović et al. (2001) and Damn-

janović & Milošević (2010). Line groups form an important

family of groups which include rod groups, also known as

crystallographic line groups (Kopský & Litvin, 2002; Evar-

estov & Panin, 2012). In the case of the chiral nanotube, its

symmetry group G�C belongs to line group family 5.

Let us now consider the ½m; 0� zigzag carbon nanotube

with chiral vector vZ ¼ mx and LZ ¼ hlZ ¼ xmi. Observe that

aside from the twofold rotation a3, the non-translation

elements of G that normalize LZ include the reflections that

are either parallel or perpendicular to lZ. We thus have

NGðLZÞ ¼ hx; y; a3; a3bi ffi c2mm and G�Z ffi NGðLZÞ\LZ ffi

ðCm � ZÞ �D2. The symmetry group G�Z consists of the m-fold

rotation �m, a screw rotation �0 and the twofold rotation �. As

in the chiral nanotube, � arises from the twofold rotation a3.

The reflection a3b about the vertical axis passing through the

origin O gives rise to a reflection �v with a vertical mirror

plane passing through the z axis. The symmetry group of the

½m; 0� nanotube is G�Z ¼ h�m; �
0; �; �vi.

For the ½2n; n� armchair carbon nanotube with chiral vector

vA ¼ 2nxþ ny, we let LA ¼ hlA ¼ x2nyni. We obtain similar

computations as in the zigzag case, we have NGðLAÞ ¼

hx; y; a3; a4bi ffi c2mm. The symmetry group G�A is generated

by the n-fold rotation �n, a screw rotation �00, the twofold

rotation � and the reflection �0v with a vertical mirror plane

passing through the z axis and brought about by the

reflection a4b. That is, G�A ffi NGðLAÞ\LA ffi ðCn � ZÞ �D2,

G�A ¼ h�n; �
00; �; �0vi. The symmetry groups of the zigzag and

armchair nanotubes belong to line group family 13.

We present in Table 1 a complete list of the symmetry

groups of single-wall carbon nanotubes according to chirality.

An illustration of a chiral and a zigzag nanotube is given,

respectively, in Figs. 2(b) and 2(c).

3. Structural analogs of carbon nanotubes

Aside from carbon nanotubes, nanotubes consisting of

different types of atoms and having an underlying hexagonal

symmetry are of interest in materials research. These are

called structural analogs of carbon nanotubes. These nano-

tubes are structurally similar to single-wall carbon nanotubes

and can also be described by rolling up the tiling T by hexa-

gons of the Euclidean plane E2 into a cylindrical tube. In this

case, the vertices of T represent atoms corresponding to

different types of chemical elements. To distinguish an atom

from another, we assign different colors to the vertices and we

obtain a vertex coloring of T. Rolling up the colored tiling

along a vector will give rise to a colored tiling on the cylinder

which will represent or model a structural analog of a carbon

nanotube.

As an example, let us consider the vertex 3-coloring of the

hexagonal tiling T given in Fig. 3(a) with an equal distribution

of colors. We roll the colored tiling along the vector v ¼ 6x to

obtain the colored tiling on the cylinder in Fig. 3(b). We arrive

at a model of a ½6; 0� nanotube made up of an equal distri-

bution of three kinds of atoms, such as a BCN nanotube.

There are other vertex 3-colorings of the hexagonal tiling

that give rise to models of BCN nanotubes. See, for example,

the colorings presented in Fig. 7. The three colors in the

colorings are also equally distributed and suggest other
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Table 1
Symmetry groups of single-wall carbon nanotubes according to chirality.

Chirality NGðLÞ G� ffi NGðLÞ\L
Line
group

Chiral hx; y; a3i ffi p2 ðCd � ZÞ �C2

d ¼ gcdðm; nÞ
5

Zigzag n ¼ 0 hx; y; a3; a
3
bi ffi c2mm ðCm � ZÞ �D2 13

m ¼ n hx; y; a3; a5bi ffi c2mm ðCm � ZÞ �D2 13
m ¼ 0 hx; y; a3; abi ffi c2mm ðCn � ZÞ �D2 13

Armchair m ¼ 2n hx; y; a3; a4bi ffi c2mm ðCn � ZÞ �D2 13
2m ¼ n hx; y; a3; bi ffi c2mm ðCm � ZÞ �D2 13
m ¼ �n hx; y; a3; a2bi ffi c2mm ðCm � ZÞ �D2 13



arrangements of atoms on a BCN nanotube, distinct from that

given in Fig. 3(a).

In arriving at vertex colorings of the hexagonal tiling T, our

basis is a framework for coloring tilings appearing in De Las

Peñas et al. (2006, 2011). The framework facilitates a

systematic enumeration of vertex k-colorings of a given tiling

using the subgroup structure of the symmetry group of the

uncolored tiling. The reader can refer to these works for more

details on the methodology. In our work, we apply the method

hand in hand with GAP (The GAP Group, 2008) and Math-

ematica (Wolfram Research, 2011) to arrive at the colorings. In

the next section, we discuss the formalism pertaining to vertex

colorings of the hexagonal tiling and the corresponding

colorings on the cylinder as well as notions from color

symmetry theory that are important points of consideration in

determining the symmetry groups of structural analogs of

carbon nanotubes.

4. Colorings of single-wall nanotubes and their color
symmetries

Let G denote the symmetry group of the uncolored hexagonal

tiling T and X the set of vertices of T. If C ¼ fc1; c1; . . . ; ckg is

a set of k colors, we define a vertex k-coloring of T to be an

onto function f : X ! C. Each u 2 X is assigned a color in C.

The coloring determines a partition P ¼ ff�1
ðciÞ : ci 2 Cg

where f�1
ðciÞ is the set of elements of X assigned color ci.

Let H be the subgroup of G which consists of symmetries in

G that effect a permutation of the colors in C. Then h 2 H if,

for every c 2 C, there is a d 2 C such that hðf�1
ðcÞÞ ¼ f�1

ðdÞ.

This defines an action of H on C where we write hc :¼ d if and

only if hðf�1
ðcÞÞ ¼ f�1

ðdÞ. The group H is called the color

group and the elements of H are referred to as the color

symmetries of the given coloring of the hexagonal tiling T. The

group K of symmetries in H that fix the colors is called the

color fixing group associated with the coloring. Note that, if

H ¼ G, then the coloring of T is called a perfect coloring.

Note that, in obtaining a coloring on the cylinder from the

colored tiling on the plane, the subgroup L ¼ hxmyni of G

defining the cylinder or nanotube must be a subgroup of K.

This is to ensure that two different colors do not overlap in the

cylinder. Given a function f : X ! C that describes a vertex

coloring of T, we obtain the onto function f � : L\X ! C that

gives the corresponding coloring on the cylinder.

Let H� 	 G� ¼ NGðLÞ\L be the color group of the coloring

on the cylinder and let Lg 2 H�, g 2 NGðLÞ. Then for every

ci 2 C, there is a cj 2 C such that ðLgÞðf ��1
ðciÞÞ ¼ f ��1

ðcjÞ or

ðLgÞðciÞ ¼ cj. It follows that gci ¼ cj. Thus g 2 H and

Lg 2 NHðLÞ\L. Conversely, if Lg 2 NHðLÞ\L, then we have

Lg 2 H�. Moreover, if K� 	 H� denotes the color fixing group

of the coloring on the cylinder, then Lg 2 K� if and only if

Lg 2 NKðLÞ\L. Thus, we have the following result.

Theorem. Let H and K denote, respectively, the color group

and color fixing group of a vertex coloring of the hexagonal

tiling T. Then H� ¼ NHðLÞ\L is the color group and

K� ¼ NKðLÞ\L is the color fixing group for the corresponding

coloring on the cylinder.

In our study, the main objective is to determine the

symmetry properties of a structural analog of a carbon

nanotube. In as much as this nanotube is represented by a

coloring on the cylinder, our focus is to study the symmetry

group of this colored pattern or its color fixing group. From

the above theorem, this is given by K� ffi NKðLÞ\L. To

understand the structure of K�, a starting point would be to

look at the color group H� ffi NHðLÞ\L of the coloring on the

cylinder. These ideas are discussed in more detail in the next

section.

5. Symmetry groups of structural analogs of carbon
nanotubes

Consider a colored cylinder of k colors that models a struc-

tural analog of a carbon nanotube consisting of k different

atoms. The color group H� ¼ NHðLÞ\L acts on the set C of k

colors and, consequently, there exists a homomorphism

’ : H� ! PermðCÞ, where PermðCÞ is the group of permuta-

tions of C. The kernel of ’ is K� ¼ NKðLÞ\L. Thus, K� /H� or

NKðLÞ /NHðLÞ.

To characterize the structure of K� ffi NKðLÞ\L, we use as

our basis the two-dimensional symmetries present in NKðLÞ,

NKðLÞ /NHðLÞ 	 NGðLÞ. The planar symmetries in NKðLÞ

give rise to cylindrical symmetries which define the line group

structure of K� ¼ NKðLÞ\L. The correspondence between the

symmetries is presented in Table 2. In Table 3, we give the line

group family structures of K� with their corresponding

generators. The element � denotes a screw rotation about the z

axis. We have the translation � with vector parallel to the z axis

and a glide reflection � about a plane passing through the z

axis. On the other hand, � is a twofold rotation about an axis

perpendicular to the z axis, while �d is a d-fold rotation about

the z axis. Moreover, �h is a reflection about a plane

perpendicular to the z axis while �v is a reflection about a
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Figure 3
(a) A vertex coloring of the hexagonal tiling T with an equal distribution
of three colors. (b) A 3-coloring of the ½6; 0� nanotube representing a
BCN nanotube.



plane passing through the z axis. Finally, � is a 2d-fold

rotoinversion about the z axis.

In the chiral case, for instance, NHðLÞ is either of plane

crystallographic group type p1 or p2. This gives rise to two

possibilities for NKðLÞ, NKðLÞ ffi p1 or p2. If NKðLÞ ffi p1,

certain translational symmetries in NKðLÞ will result in a screw

rotation and a rotation about the z axis in K�. This implies that

K� belongs to the first family of line groups. If NKðLÞ ffi p2,

aside from the translational symmetries, we have the twofold

rotation in NKðLÞ that will give rise to a corresponding twofold

rotation in K� about an axis perpendicular to the z axis.

Hence, K� belongs to line group family 5.

For the achiral cases, we consider the following plane

crystallographic group types for NKðLÞ, namely, p1, p2, cm,

pm, c2mm, p2mm, pg, p2mg and p2gg. These are all the

possibilities for NKðLÞ satisfying NKðLÞ /NHðLÞ 	 NGðLÞ

(Senechal, 1985; Rapanut, 1988).

(i) The first case is when NKðLÞ ffi p1 or p2. Consequently,

K� belongs to line group family 1 or 5, respectively.

(ii) Suppose NKðLÞ ffi cm or pm. If NKðLÞ ffi cm, a trans-

lation t, which is neither parallel nor perpendicular to l (Fig.

4a), will yield a non-trivial screw rotation in K�. On the other

hand, if NKðLÞ ffi pm, such a translation (called t0 in Fig. 4b)

will yield a trivial screw rotation in K�. (A screw rotation in K�

is referred to as trivial if its rotation and translation compo-

nents are also symmetries in K�.)

To characterize K� further, we consider the reflections in

NKðLÞ. If NKðLÞ ffi cm or pm, then it contains reflections in

one direction. If the axes of reflections are parallel to l, then

we obtain a reflection about a plane perpendicular to the z

axis. In this case, K� belongs to line group family 4 if

NKðLÞ ffi cm, or to line group family 3 if NKðLÞ ffi pm. On the

other hand, if the axes of reflections are perpendicular to l,

then there is a reflection about a plane passing through the z

axis. We obtain K� to be of line group family 8 if NKðLÞ ffi cm,

or of line group family 6 if NKðLÞ ffi pm.

(iii) If NKðLÞ ffi c2mm or p2mm, then NKðLÞ contains

reflections in two directions. Consequently, we obtain a

reflection about a plane perpendicular to the z axis as well as a

reflection about a plane passing through the z axis. If

NKðLÞ ffi c2mm, we have a similar case as NKðLÞ ffi cm, where

there is a translation that will yield a non-trivial screw rota-

tion, implying that K� belongs to line group family 13. On the

other hand, if NKðLÞ ffi p2mm, then K� belongs to line group

family 11.

(iv) If NKðLÞ ffi pg, then NKðLÞ contains glide reflections in

one direction and no reflections. If a glide reflection axis is

parallel to l, we get a rotoinversion about the z axis and thus

K� belongs to line group family 2. On the other hand, if a glide

reflection axis is perpendicular to l, we get a glide reflection

about a plane passing through the z axis. In this case, K�

belongs to line group family 7.

(v) If NKðLÞ ffi p2mg, then NKðLÞ contains glide reflections

and reflections. As in (iv), if the glide reflection axis is parallel

to l, we get a rotoinversion about the z axis. In this case, the

reflection has an axis perpendicular to l, so we also obtain a

reflection about a plane passing through the z axis. Thus, K�

belongs to line group family 9. On the other hand, if the glide

reflection axis is perpendicular to l, we get a glide reflection
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Table 2
Correspondence between symmetries in NKðLÞ and K� ffi NKðLÞ\L, L ¼ hxmyni, m; n 2 Z.

Planar symmetries Cylindrical symmetries

Translation Parallel to l Rotation about the z axis
Perpendicular to l Translation along the z axis
Neither parallel, nor perpendicular to l Screw rotation about the z axis

Twofold rotation Twofold rotation about an axis perpendicular to the z axis

Reflection With axis parallel to l Reflection about a plane perpendicular to the z axis
With axis perpendicular to l Reflection about a plane passing through the z axis

Glide reflection With axis parallel to l Rotoinversion about the z axis
With axis perpendicular to l Glide reflection about a plane passing through the z axis

Figure 4
Respective translations t and t0 on the lattice corresponding to (a)
NKðLÞ ffi cm and (b) NKðLÞ ffi pm.

Table 3
The line group structure of K� ffi NKðLÞ\L based on the plane crystal-
lographic group type of NKðLÞ.

For families 4, 8, 13, the rotation component of the screw rotation � has order
2d.

NKðLÞ Planar symmetries
K� ffi NKðLÞ\L
line group family

Line group
generators

p1 1 �; �d

p2 5 �; �d; �
cm Reflection axis parallel to l 4 �; �d; �h

Reflection axis perpendicular to l 8 �; �d; �v

pm Reflection axis parallel to l 3 �; �d; �h

Reflection axis perpendicular to l 6 �; �d; �v

c2mm 13 �; �d; �h; �v

p2mm 11 �; �d; �h; �v

pg Glide axis parallel to l 2 �; �
Glide axis perpendicular to l 7 �; �d

p2mg Glide axis parallel to l 9 �; �; �v

Glide axis perpendicular to l 12 �; �d; �h; �
p2gg 10 �; �



about a plane passing through the z axis and a reflection about

a plane perpendicular to the z axis. Thus, K� belongs to line

group family 12.

(vi) Lastly, if NKðLÞ ffi p2gg, then NKðLÞ contains glide

reflections in two directions and no reflections. In this case,

since the glide reflections in NKðLÞ have axes which are both

parallel and perpendicular to l, then K� contains a rotoinver-

sion about the z axis together with a glide reflection about a

plane passing through the z axis. Hence K� possesses line

group family 10 symmetries.

We give a summary of the discussion above in Table 3.

If we consider the coloring in Fig. 3(a), which gives rise to

a BCN nanotube, we find that its color fixing group is

K ¼ hx; y3; a3bi ffi cm. Now, depending on the chiral vector of

the nanotube, we get different plane crystallographic group

structures for NKðLÞ. For instance, in the chiral case, when

L ¼ hxmyni;NGðLÞ ¼ ha
3; x; yi ffi p2, we obtain NKðLÞ ¼

K \ NGðLÞ ¼ hx; y3i ffi p1. From the result given in Table 3,

K� belongs to line group family 1. For the zigzag nanotube

with L ¼ hxmi;NKðLÞ ¼ hx; y3; a3bi ffi cm, we find that the

axis of reflection a3b is perpendicular to the chiral vector mx.

Hence, the symmetries of K� belong to line group family 8.

On the other hand, for the armchair nanotube with

L ¼ hxmy2mi;NKðLÞ ¼ hx; y3; a3bi ffi cm. But this time, the

axis of reflection a3b is parallel to the chiral vector mxþ 2my.

Thus, K� belongs to line group family 4. For the other achiral

nanotubes, NKðLÞ ¼ hx; y3i ffi p1, so K� belongs to line group

family 1. Hence, for a BCN nanotube obtained from the

3-coloring in Fig. 3(a), the symmetry group belongs to line

group family 1, 4 or 8 depending on the chirality.

6. Symmetry groups of BN, BCN, BC3 and BC2N
nanotubes

In this part of the paper, we apply the results given in the

previous section to derive the symmetry groups of particular

structural analogs of a carbon nanotube, such as BN, BC3,

BCN and BC2N nanotubes.

Note that the restrictions on the values of m, n for the chiral

vector v ¼ mxþ ny in order to arrive at BC3, BCN and BC2N

nanotubes are presented in Table 4.

6.1. BN nanotubes

The vertex 2-coloring of the hexagonal tiling given in Fig. 5,

when folded along a chiral vector, will result in a model of a

BN nanotube. The vertices of the hexagonal tiling are assigned

two colors, which are equally distributed, to represent the

boron and nitrogen atoms. The color fixing group of the

coloring is given by K ¼ hx; y; a2; abi ffi p3m1. Depending on

the chirality of the nanotube, we calculate NKðLÞ and deter-

mine its plane crystallographic group type. We arrive at the

line group structure of K� ¼ NKðLÞ\L presented in Table 5.

For a chiral nanotube, NKðLÞ ffi p1 and K� belongs to line

group family 1. For the zigzag nanotubes, NKðLÞ ffi cm. The

axes of the reflections in NKðLÞ are perpendicular to l. Thus,

K� belongs to line group family 8. For the armchair nanotubes,

NKðLÞ is also of type cm. However, the axes of reflections in

NKðLÞ are parallel to l. In this case, K� belongs to line group

family 4.

Note that the coloring on the cylinder obtained from the

2-coloring presented in Fig. 5 can also serve as a model for

other structural analogs of carbon nanotubes, such as gallium

nitride (GaN) and aluminium nitride (AlN) nanotubes. These

analogs also possess an equal distribution of two atoms. Our

calculations suggest that these nanotubes also have the same

symmetry groups as the BN nanotubes. The same symmetry

group structure of BN and GaN nanotubes has been reported
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Table 4
The restrictions on the values of m, n for the chiral vector v ¼ mxþ ny in
arriving at nanotubes from the colorings shown in Figs. 6, 7 and 8.

BxCyNz Figure Restriction

BC3 Fig. 6 (a) m; n 2 2Z
(b) n 2 2Z
(c) 2m� n 2 4Z; n 2 2Z

BCN Fig. 7 (a) 2m� n 2 6Z; n 2 2Z
(b) 4mþ n 2 12Z; n 2 4Z

BC2N Fig. 8 (a) m 2 2Z
(b) m; n 2 2Z
(c) n 2 2Z
(d) n 2 4Z
(e) 2m� n 2 4Z; n 2 2Z
(f) n 2 2Z
(g) n 2 4Z
(h) m 2 2Z; n 2 4Z
(i) mþ n 2 4Z
(j) mþ n 2 8Z;m� n 2 2Z
(k) mþ n 2 4Z
(l) mþ n 2 4Z

Table 5
Line group symmetry structure of nanotubes arising from the coloring
given in Fig. 5.

Chirality NKðLÞ
Line
group K�

Chiral hx; yi ffi p1 1

Zigzag n ¼ 0 hx; y; a3bi ffi cm 8
m ¼ n hx; y; a5bi ffi cm 8
m ¼ 0 hx; y; abi ffi cm 8

Armchair m ¼ 2n hx; y; abi ffi cm 4
2m ¼ n hx; y; a3bi ffi cm 4
m ¼ �n hx; y; a5bi ffi cm 4

Figure 5
A vertex 2-coloring of the hexagonal tiling that gives rise to a BN
nanotube.



in Damnjanović et al. (2001), Alon (2001) and Evarestov et al.

(2010).

6.2. BC3 nanotubes

In obtaining geometric models for BC3 nanotubes, we

construct vertex 2-colorings of the hexagonal tiling using two

colors that appear in the ratio of 3:1, as shown in Fig. 6. The

red and yellow colors represent carbon and boron, respec-

tively. The symmetry groups of the BC3 nanotubes arising

from the colorings given in Fig. 6 are summarized in Table 6.

The symmetry groups of the BC3 nanotube arising from the

coloring given in Fig. 6(a) are also reported in Damnjanović et

al. (2001). The symmetric arrangements of the boron and

carbon atoms appearing in Figs. 6(b) and 6(c), which suggest

other atomic configurations of a BC3 nanotube, appear in

Wang et al. (1996) and Azevedo & de Paiva (2006).

6.3. BCN nanotubes

As discussed previously, a model for a BCN nanotube will

arise by considering vertex 3-colorings of the hexagonal tiling

with an equal distribution of three colors. We present in Fig. 7

two other 3-colorings that will give rise to BCN nanotubes.

The atomic configurations suggested by these colorings

are among the most stable carbon–boron–nitride ternary

graphite-like monolayers as reported in Azevedo & de Paiva

(2006). The symmetry groups of the corresponding BCN

nanotubes are given in Table 7.

6.4. BC2N nanotubes

In this part of the paper, we enumerate various 3-colorings

of the hexagonal tiling associated with BC2N nanotubes and

present their corresponding symmetry groups. The colors we

use in the colorings are yellow, red and blue that appear in the

ratio of 1:2:1. They are used to represent boron, carbon and

nitrogen, respectively. We adopt the methodology given in De

Las Peñas et al. (2006, 2011) and obtained each coloring by

specifying a color group H which is a subgroup of the

symmetry group G ¼ ha; b; x; yi ffi p6mm of the hexagonal

tiling. Eliminating the colorings with adjacent boron and

nitrogen atoms, we arrive at the colorings presented in Fig. 8.

In constructing these colorings, we consider H such that

½G : H� 	 20. In these examples, the set of vertices of the tiling

form two equal orbits under H. The symmetry groups for the

resulting BC2N nanotubes are presented in Table 8. Results

indicate that we have line group families 5 and 13 for the

BC2N (type I) nanotubes and line group families 1, 3 and 6 for

the BC2N (type II) nanotubes (refer to Damnjanović et al.,

2001 and Pan et al., 2009 for comparison). For the BC2N (type

III) nanotubes (Liu et al., 1989), we also obtain line group

families 1, 3 and 6. Our calculations suggest other types of

nanotubes other than those of types I, II and III.
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Table 6
Line group symmetry structure of BC3 nanotubes arising from the colorings given in Fig. 6.

Fig. 6(a) Fig. 6(b) Fig. 6(c)

Chirality NKðLÞ Line group K� NKðLÞ Line group K� NKðLÞ Line group K�

Chiral hx2; y2; a3i ffi p2 5 hx; y2i ffi p1 1 hx2; xy2; xa3i ffi p2 5

Zigzag n ¼ 0 hx2; y2; a3b; bi ffi c2mm 13 hx; y2; a3bi ffi pm 6 hx2; xy2; xb; a3bi ffi p2mg 9
m ¼ n hx2; y2; a2b; a5bi ffi c2mm 13 hx; y2i ffi p1 1 hx2; xy2; xa3i ffi p2 5
m ¼ 0 hx2; y2; ab; a4bi ffi c2mm 13 hx; y2i ffi p1 1 hx2; xy2; xa3i ffi p2 5

Armchair m ¼ 2n hx2; y2; ab; a4bi ffi c2mm 13 hx; y2i ffi p1 1 hx2; xy2; xa3i ffi p2 5
2m ¼ n hx2; y2; a3b; bi ffi c2mm 13 hx; y2; a3bi ffi pm 3 hx2; xy2; xb; a3bi ffi p2mg 12
m ¼ �n hx2; y2; a2b; a5bi ffi c2mm 13 hx; y2i ffi p1 1 hx2; xy2; xa3i ffi p2 5

Figure 6
Vertex 2-colorings of the hexagonal tiling that give rise to BC3 nanotubes.
(a) K = hx2; y2; a; bi ffi p6mm, (b) K = hx; y2; a3bi ffi pm, (c) K =
hx2; xy2; xb; a3bi ffi p2mg.



7. Nanotubes with non-hexagonal symmetry

The approach discussed in the previous sections to determine

symmetry groups of carbon nanotubes and their structural

analogs can be adapted to a more general setting, when the

tubes may not necessarily have hexagonal symmetry.

Synonymous to a graphene sheet, a monolayer consisting of

a single type of atom may be modeled geometrically using an

isogonal tiling S of E2. Isogonal tilings are vertex-transitive

and include, among others, the 11 Archimedean tilings and the

tilings whose faces are the unit cells of the five two-dimen-

sional Bravais lattices (Grünbaum & Shephard, 1978). In the

model, vertices of S represent atoms and edges represent

bonds. Just like a carbon nanotube, a cylindrical tube is

obtained by wrapping up the monolayer of atoms (or the tiling

S) along a chiral vector v. If x, y with vectors x, y are the

generating translational symmetries of the symmetry group G

of S, then the chiral vector of the nanotube can be expressed

as v ¼ mxþ ny, where m; n 2 Z, and we obtain an ½m; n�

single-wall nanotube. Employing the orbit space approach

discussed in x2, the resulting nanotube has symmetry group

G� ffi NGðLÞ\L, where L is the subgroup of G generated by the

translation with vector v.

To illustrate these ideas, we consider a nanotube rolled up

from a monolayer made up of carbon atoms located at the

vertices of a 4 � 82 tiling shown in Fig. 9(a). This isogonal tiling

has faces consisting of regular octagons and squares. Its

symmetry group is given by G ¼ hx; y; a; bi ffi p4mm gener-

ated by the fourfold (counterclockwise) rotation a about O,

the reflection b about the line through O in the direction of x,

and the translations x; y. If we fold this 4 � 82 tiling along the

chiral vector v ¼ mxþ ny, which determines the subgroup

L ¼ hxmyni, we obtain an ½m; n� TUC4C8 nanotube (Arezoo-

mand & Taeri, 2009; Heydari & Taeri, 2009). For example, a

½4; 0� TUC4C8 nanotube is presented in Fig. 9(b).

We compute the symmetry group G� ffi NGðLÞ\L of the

TUC4C8 nanotube and determine its line group structure. The

computations based on chirality are given in Table 9. The

results indicate that in addition to line group families 5 and 13,

to which the symmetry group of a single-wall carbon nanotube

belongs, the symmetry group of a TUC4C8 nanotube may also

belong to line group family 11. The results we obtain are

consistent with the symmetry groups of the TUC4C8 nano-

tubes computed by Arezoomand & Taeri (2009).

Now, in obtaining nanotubes consisting of k different atoms,

we consider a k-vertex coloring of S. To ensure that no two

types of atoms or colors coincide in the tube, the subgroup L

determined by the tube’s chiral vector must be a subgroup of

the color fixing group K of the coloring. The symmetry group

of the nanotube is given by K� ffi NKðLÞ\L.

In analyzing the two-dimensional symmetries present in

NKðLÞ, we remark that if a symmetry g 2 K normalizes the

subgroup L (whose non-identity elements consist of transla-

tions), then g must send an element of L to itself or to its

inverse. It follows that g cannot be a rotation of order greater

than 2. Hence, the possible plane crystallographic group types

for NKðLÞ are p1, p2, cm, pm, c2mm, p2mm, pg, p2mg and

p2gg. As mentioned in x5, this list includes all the possible

crystallographic types for NKðLÞ satisfying NKðLÞ / NHðLÞ

	 NGðLÞ, where H is the color group of the colored tiling.

Thus, Table 3 gives a complete characterization of all the

possible line group structures of nanotubes rolled up from

colored isogonal tilings with a crystallographic color fixing

group.

We show in Fig. 10(a) a vertex 3-coloring of the 4 � 82 tiling.

Its color fixing group is given by K ¼ hx; y; a2bi ffi pm. The

colored tiling is rolled along the vector v ¼ 4x to obtain the
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research papers

Table 7
Line group symmetry structure of BCN nanotubes arising from the colorings given in Fig. 7.

Fig. 7(a) Fig. 7(b)

Chirality NKðLÞ Line group K� NKðLÞ Line group K�

Chiral hx3; xy2i ffi p1 1 hx3; xy�4i ffi p1 1

Zigzag n ¼ 0 hx3; xy2; a3bi ffi pm 6 hx3; xy�4; a3bi ffi pm 6
m ¼ n hx3; xy2i ffi p1 1 hx3; xy�4i ffi p1 1
m ¼ 0 hx3; xy2i ffi p1 1 hx3; xy�4i ffi p1 1

Armchair m ¼ 2n hx3; xy2i ffi p1 1 hx3; xy�4i ffi p1 1
2m ¼ n hx3; xy2; a3bi ffi pm 3 hx3; xy�4; a3bi ffi pm 3
m ¼ �n hx3; xy2i ffi p1 1 hx3; xy�4i ffi p1 1

Figure 7
Vertex 3-colorings of the hexagonal tiling that give rise to BCN
nanotubes. (a) K ¼ hx3; xy2; a3bi ffi pm, (b) K ¼ hx3; xy�4; a3bi ffi pm.
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20 Ma. Louise Antonette N. De Las Peñas et al. � Symmetry groups Acta Cryst. (2014). A70, 12–23

Table 8
Line group symmetry structures of BC2N nanotubes arising from the colorings given in Fig. 8.

Fig. 8(a) Fig. 8(b) Fig. 8(c) Fig. 8(d)

Chirality NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K�

Chiral hx2; yi
p1

1 hx2; y2; a3i

p2
5 hx; y2i

p1
1 hx; y4; a3i

p2
5

Zigzag n ¼ 0 hx2; yi
p1

1 hx2; y2; a3b; bi
c2mm

13 hx; y2; a3bi
pm

6 hx; y4; a3b; bi
p2mm

11

m ¼ n hx2; yi
p1

1 hx2; y2; a3i

p2
5 hx; y2i

p1
1 hx; y4; a3i

p2
5

m ¼ 0 hx2; y; abi
pm

6 hx2; y2; a3i

p2
5 hx; y2i

p1
1 hx; y4; a3i

p2
5

Armchair m ¼ 2n hx2; y; abi
pm

3 hx2; y2; a3i

p2
5 hx; y2i

p1
1 hx; y4; a3i

p2
5

2m ¼ n hx2; yi
p1

1 hx2; y2; a3b; bi
c2mm

13 hx; y2; a3bi
pm

3 hx; y4; a3b; bi
p2mm

11

m ¼ �n hx2; yi
p1

1 hx2; y2; a3i

p2
5 hx; y2i

p1
1 hx; y4; a3i

p2
5

Fig. 8(e) Fig. 8(f) Fig. 8(g) Fig. 8(h)

Chirality NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K�

Chiral hx2; xy2; xa3i

p2
5 hx; y2i

p1
1 hx; y4; ya3i

p2
5 hx2; y4i

p1
1

Zigzag n ¼ 0 hx2; xy2; xa3; a3bi
p2mg

9 hx; y2; a3bi
pm

6 hx; y4; ya3; a3bi
p2mg

9 hx2; y4; ya3bi
pg

7

m ¼ n hx2; xy2; xa3i

p2
5 hx; y2i

p1
1 hx; y4; ya3i

p2
5 hx2; y4i

p1
1

m ¼ 0 hx2; xy2; xa3i

p2
5 hx; y2i

p1
1 hx; y4; ya3i

p2
5 hx2; y4i

p1
1

Armchair m ¼ 2n hx2; xy2; xa3i

p2
5 hx; y2i

p1
1 hx; y4; ya3i

p2
5 hx2; y4i

p1
1

2m ¼ n hx2; xy2; xa3; a3bi
p2mg

12 hx; y2; a3bi
pm

3 hx; y4; ya3; a3bi
p2mg

12 hx2; y4; ya3bi
pg

2

m ¼ �n hx2; xy2; xa3i

p2
5 hx; y2i

p1
1 hx; y4; ya3i

p2
5 hx2; y4i

p1
1

Fig. 8(i) Fig. 8(j) Fig. 8(k) Fig. 8(l)

Chirality NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K� NKðLÞ

Line
group
K�

Chiral hx4; xy�1i

p1
1 hxy�1; a3x�1i

p2
5 hx4; xy�1i

p1
1 hx4; xy�1i

p1
1

Zigzag n ¼ 0 hx4; xy�1i

p1
1 hxy�1; xa3i

p2
5 hx4; xy�1i

p1
1 hx4; xy�1i

p1
1

m ¼ n hx4; xy�1; xa5bi
pg

7 hxy�1; xa3; a5y�1bxi
p2gg

10 hx4; xy�1; xa5bi
pg

7 hx4; xy�1; axabi
pg

2

m ¼ 0 hx4; xy�1i

p1
1 hxy�1; xa3i

p2
5 hx4; xy�1i

p1
1 hx4; xy�1i

p1
1

Armchair m ¼ 2n hx4; xy�1i

p1
1 hxy�1; xa3i

p2
5 hx4; xy�1i

p1
1 hx4; xy�1i

p 1
1

2m ¼ n hx4; xy�1i

p1
1 hxy�1; xa3i

p2
5 hx4; xy�1i

p1
1 hx4; xy�1i

p1
1

m ¼ �n hx4; xy�1; xa5bi
pg

2 hxy�1; xa3; a5y�1bxi
p2gg

10 hx4; xy�1; xa5bi
pg

2 hx4; xy�1; axabi
pg

7



nanotube given in Fig. 10(b). This

nanotube points to a possible structural

analog of the ½4; 0� TUC4C8 nanotube

(Fig. 9b) consisting of three kinds of

atoms that appear in the ratio of

1:2:1. We obtain NKðLÞ ¼ K and the

symmetry group K� of the nanotube

belongs to line group family 6.

7.1. Commensurate and incommensu-
rate nanotubes

Nanotubes that arise by rolling up an

isogonal tiling may result in commen-

surate and incommensurate structures.

A nanotube is said to be commensurate

if the infinite cyclic group of its corre-

sponding line group symmetry structure

contains translations along the z axis.

Otherwise, the nanotube is said to be

incommensurate.

In our work, the commensurability of

a given nanotube is determined by

finding a translation in NGðLÞ or NKðLÞ

(when S is colored) that is perpendi-

cular to the translation l that generates

L. Recall from Table 2 that such a

translation in NGðLÞ or NKðLÞ gives rise

to a respective translation in G� or K�

along the z axis.

An incommensurate nanotube has a

symmetry group belonging to either line

group family 1 or 5 (Damnjanović et al.,

2007; Damnjanović & Milošević, 2010).

This is due to the fact that for each of

the remaining 11 line group families, a

suitable power p of its infinite cyclic

group generator results in a translation

(not necessarily the minimal one) in the

line group. For line group families 2, 3,
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Figure 8
Vertex 3-colorings of the hexagonal tiling that give rise to BC2N nanotubes. Colorings
corresponding to type I, II and III BC2N nanotubes are labeled. (a) K ¼ hx2; y; abi ffi pm, (b)
K ¼ hx2; y2; a3; bi ffi c2mm, (c) K ¼ hx; y2; a3bi ffi pm, (d) K ¼ hx; y4; a3; bi ffi p2mm, (e)
K ¼ hx2; xy2; xa3; a3bi ffi p2mg, (f) K ¼ hx; y2; a3bi ffi pm, (g) K ¼ hx; y4; ya3; a3bi ffi p2mg, (h)
K ¼ hx2; y4; ya3bi ffi pg, (i) K ¼ hx4; xy�1; xa5bi ffi pg, (j) K ¼ hxy�1; xa3; a5y�1bxi ffi p2gg, (k)
K ¼ hx4; xy�1; xa5bi ffi pg, (l) K ¼ hx4; xy�1; axabi ffi pg.

Figure 9
(a) The 4 � 82 tiling together with the translation vectors x; y and the chiral
vector v ¼ 4x. (b) The [4, 0] TUC4C8 nanotube obtained by rolling up the
4 � 82 tiling in (a) along the chiral vector v.

Figure 10
(a) A vertex coloring of the 4 � 82 tiling using three colors. (b) A
3-coloring of the ½4; 0� TUC4C8 nanotube suggesting a structural analog
made up of three kinds of atoms that appear in the ratio 1:2:1.



6, 9, 11 with infinite cyclic group generator � (a translation), we

have p ¼ 1; for families 7, 10, 12 with infinite cyclic group

generator � (a glide reflection), p ¼ 2; and for families 4, 8, 13

with infinite cyclic group generator � (a screw rotation with

rotation component of order 2d, where d is the order of the

line group’s generating rotation), we have p ¼ 2d. See Table 3

for details of each line group family’s generators. Moreover,

Table 3 clarifies that if NGðLÞ or NKðLÞ is one of the plane

crystallographic groups cm, pm, c2mm, p2mm, pg, p2mg and

p2gg, then we obtain a commensurate nanotube. An incom-

mensurate nanotube may arise if NGðLÞ [respec-

tively, NKðLÞ] is of type p1 or p2. We remark

further that incommensurate nanotubes only occur

when NGðLÞ or NKðLÞ has an underlying paralle-

logramic (oblique), rectangular or rhombic

(centered rectangular) lattice structure. This is

because a translation perpendicular to l is always

present if the lattice of NGðLÞ or NKðLÞ is square

or hexagonal. Thus, a single-wall carbon nanotube

or a TUC4C8 nanotube is always commensurate

regardless of its chiral vector.

We present in Fig. 11(a) a rectangular tiling with

symmetry group G ¼ hx; y; a; bi ffi p2mm having

basis vectors

x ¼
	
0

� �
; y ¼

0

2

� �
: ð1Þ

The group G is generated by the twofold (coun-

terclockwise) rotation a about O, the reflection b

about the line through O in the direction of x, and

the translations x; y. Depending on the chiral

vector along which it is rolled, this rectangular

tiling gives rise to both commensurate and

incommensurate nanotubes.

The nanotube in Fig. 11(b) is obtained by rolling

the rectangular tiling along the vector v1 ¼ 5x. We

have NGðLÞ ¼ hx; y; a; bi ffi p2mm. This tells us

the nanotube is commensurate with its symmetry

group G� belonging to line group family 11. On the

other hand, the nanotube in Fig. 11(c) is obtained

by rolling the same tiling along the vector

v2 ¼ 4xþ 2y. Observe that NGðLÞ ¼ hx; y; ai ffi p2

and does not contain a translation perpendicular to

x4y2. This nanotube is incommensurate and its symmetry

group G� belongs to line group family 5.

As a last example, we present a 2-coloring of the rectan-

gular tiling (Fig. 12a) that gives rise to a nanotube (Fig. 12b)

using the chiral vector v2 ¼ 4xþ 2y. The color fixing group

is given by K ¼ hx2; xy; a; ybi ffi c2mm and NKðLÞ ¼

hx2; xy; ai ffi p2. Note that NKðLÞ also does not contain a

translation perpendicular to x4y2. This nanotube is also

incommensurate and its symmetry group K� belongs to line

group family 5.

8. Conclusion and outlook

In this work, a method to determine symmetry groups of

structural analogs of single-wall carbon nanotubes has been

presented. We have characterized the symmetry groups of

these nanotubes according to line groups. Our approach is to

analyze the symmetry group structure of a k-colored hexa-

gonal tiling of the plane which, when folded along a chiral

vector, will result in an orbit space model of a single-wall

nanotube consisting of k different atoms. Based on the chir-

ality of the nanotube, particular color fixing symmetries will

give rise to cylindrical symmetries that will define the line

group symmetry structure of the nanotube.

research papers
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Figure 11
(a) The rectangular tiling with translation vectors x and y as given in equation (1). (b) A
commensurate nanotube obtained by rolling up the rectangular tiling in (a) along the
chiral vector v1 ¼ 5x. (c) An incommensurate nanotube obtained by rolling up the
rectangular tiling in (a) along the chiral vector v2 ¼ 4xþ 2y.

Figure 12
(a) A vertex 2-coloring of the rectangular tiling given in Fig. 11(a). (b) A 2-coloring of
the ½4; 2� nanotube in Fig. 11(c).

Table 9
Symmetry groups of TUC4C8 nanotubes according to chirality.

Nanotubes containing reflectional symmetries are classified as achiral while
those without are classified as chiral.

Chirality NGðLÞ G� ffi NGðLÞ\L
Line
group

Chiral hx; y; a2i ffi p2 Cd � Zð Þ �C2

d ¼ gcdðm; nÞ
5

Achiral n ¼ 0 hx; y; b; a2bi ffi p2mm Cm � Zð Þ �D2 11
m ¼ 0 hx; y; b; a2bi ffi p2mm ðCn � ZÞ �D2 11
m ¼ n hx; y; ab; a3bi ffi c2mm Cm � Zð Þ �D2 13
m ¼ �n hx; y; ab; a3bi ffi c2mm Cm � Zð Þ �D2 13



We have determined that the symmetry group of a nano-

tube arises from one of the 13 line group families and that the

type of symmetry group obtained for a particular type of

nanotube varies, depending on the chirality. We have derived

the symmetry groups of BN, BC3, BCN and BC2N nanotubes.

The color symmetry approach presented here in studying

the symmetry groups of nanotubes in a two-dimensional

setting suggests a convenient and accessible way of analyzing

the line group symmetries. It also facilitates the character-

ization of the possible line group structures alongside the

various arrangements of atoms that exist and are theoretically

possible on a nanotube, made possible by a coloring frame-

work (De Las Peñas et al., 2006, 2011) applied to construct

vertex colorings of the hexagonal tiling.

The method presented to characterize symmetry groups of

carbon nanotubes and their structural analogs may also be

applied to nanotubes with other symmetries by studying their

corresponding isogonal tilings on the plane. These nanotubes

include the incommensurate ones, which may arise from tilings

with underlying parallelogramic (oblique), rectangular or

rhombic (centered rectangular) lattice structure, depending on

the tiling’s color fixing symmetries.

A possible next step in the study is to determine the

symmetry groups of double-wall and multi-wall nanotubes

using a similar method.

Another potential problem that can be addressed for future

work is to characterize the symmetry group structures of

nanotori and investigate other types of symmetric arrange-

ments of various atoms theoretically possible on a torus.
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De Las Peñas, M. L. A. N., Felix, R. P. & Laigo, G. R. (2006). Z.
Kristallogr. 221, 665–672.

Dresselhaus, M., Dresselhaus, G. & Saito, R. (1995). Carbon, 33, 883–
891.

Endo, M., Iijima, S. & Dresselhaus, M. S. (1996). Carbon Nanotubes.
Oxford: Elsevier Science.

Evarestov, R. A. & Panin, A. I. (2012). Acta Cryst. A68, 582–588.
Evarestov, R. A., Zhukovskii, Y. F., Bandura, A. V. & Piskunov, S.

(2010). J. Phys. Chem. C, 114, 21061–21069.
Grünbaum, B. & Shephard, G. C. (1978). Trans. Am. Math. Soc. 242,

335–353.
Harker, D. (1978). Proc. Natl Acad. Sci. USA, 75, 5751–5754.
Heydari, A. & Taeri, B. (2009). Eur. J. Combin. 30, 1134–1141.
Iijima, S. & Ichihashi, T. (1993). Nature (London), 363, 603–605.
Kopský, V. & Litvin, D. B. (2002). Editors. International Tables for

Crystallography, Vol. E, Subperiodic Groups, 1st ed., p. 75.
Dordrecht: Kluwer Academic Publishers.

Lifshitz, R. (1997). Rev. Mod. Phys. 69, 1181–1218.
Liu, A., Wentzcovitch, R. & Cohen, M. (1989). Phys. Rev. B, 39, 1760–

1765.
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